An Asymmetric Putnam–fuglede Theorem for Unbounded Operators

نویسندگان

  • JAN STOCHEL
  • Joseph A. Ball
چکیده

The intertwining relations between cosubnormal and closed hyponormal (resp. cohyponormal and closed subnormal) operators are studied. In particular, an asymmetric Putnam–Fuglede theorem for unbounded operators is proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUGLEDE-PUTNAM THEOREM FOR w-HYPONORMAL OR CLASS Y OPERATORS

An asymmetric Fuglede-Putnam’s Theorem for w−hyponormal operators and class Y operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.

متن کامل

Fuglede–putnam’s Theorem for W–hyponormal Operators

An asymmetric Fuglede-Putnam’s Theorem for w -hyponormal operators and dominant operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel. Mathematics subject classification (2010): 47B47, 47A30, 47B20.

متن کامل

On the Putnam-Fuglede theorem

We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpo-tents. Some asymptotic results are also given.

متن کامل

A Correction and Improvement of a Theorem on Ordered Groups

5. I. Kaplansky, Projections in Banach algebras, Ann. of Math. vol. 53 (1951) pp. 235-249. 6. -, Rings of operators, University of Chicago mimeographed notes, 1955. 7. L. H. Loomis, An introduction to abstract harmonic analysis, D. van Nostrand, 1953. 8. T. Ogasawara and K. Yoshinaga, Extension of ^-application to unbounded operators, J. Sci. Hiroshima Univ. Ser. A. vol. 19 (1955) pp. 273-299. ...

متن کامل

THE FUGLEDE–PUTNAM THEOREM AND PUTNAM’S INEQUALITY FOR QUASI-CLASS (A, k) OPERATORS

An operator T ∈ B(H) is called quasi-class (A, k) if T ∗k(|T | − |T |)T k ≥ 0 for a positive integer k, which is a common generalization of class A. The famous Fuglede–Putnam’s theorem is as follows: the operator equation AX = XB implies A∗X = XB∗ when A and B are normal operators. In this paper, firstly we show that if X is a Hilbert-Schmidt operator, A is a quasi-class (A, k) operator and B∗ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001